
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Script Manager Q&As
Text M.TX.ScriptMgr.Q&As

Revised by: Developer Support Center October 1992
Written by: Developer Support Center October 1990

This Technical Note contains a collection of Q&As relating to a specific topic—questions
you’ve  sent  the  Developer  Support  Center  (DSC)  along  with  answers  from  the  DSC
engineers.  While DSC engineers have checked the Q&A content  for  accuracy,  the Q&A
Technical Notes don’t have the editing and organization of other Technical Notes. The Q&A
function is to get new technical information and updates to you quickly, saving the polish for
when the information migrates into reference manuals.

Q&As are now included with Technical Notes to make access to technical updates easier for
you. If you have comments or suggestions about Q&A content or distribution, please let us
know by sending an AppleLink to DEVFEEDBACK. Apple Partners may send technical
questions about Q&A content to DEVSUPPORT for resolution.

New Q&As and Q&As revised this month are marked with a bar in the side margin.

Using FormatXToStr and FormatStrToX with Pascal switches
Written: 12/10/90
Last reviewed: 8/1/92

Why do the FormatXToStr and FormatStrToX Script Manager routines stop working when I
use the Pascal -MC68881 switch?
___

Regular SANE extended numbers are 10 bytes long while MC68881 extended numbers are
12 bytes long, and the extra two bytes are right in the middle of every 68881 extended
number.  Appendix  G  “The  SANE  Library”  in  the  Macintosh  Programmer’s  Workshop
(MPW) Object Pascal version 3.1 manual goes into detail about this. The FormatX2Str and
FormatStr2X parse the extended number you pass them directly, and they can only parse 10-
byte  extended  numbers.  Fortunately,  you  can  still  use  the  -mc68881  option  with  these
routines as long as you convert any extended numbers to 80-bit extended numbers before
passing them to FormatX2Str and FormatStr2X. The SANE.p unit has routines to do this
called X96toX80 and X80toX96 (incorrectly documented as X96to80 and X80to96 in the
MPW  Object  Pascal  manual).  Because  the  extended80  and  extended96  types  aren’t
Developer Support Center October 1992



Macintosh Technical Notes

equivalent to the extended type as far as Object Pascal is concerned, you have to redeclare
FormatX2Str and FormatStr2X to take these types. You can do this as follows:

FUNCTION FormatX2Str80 (x:             extended80;
                       myCanonical:   NumFormatString;
                       partsTable:    NumberParts;
                       VAR outString:  Str255):  FormatStatus;

Developer Support Center October 1992



Macintosh Technical Notes

   INLINE $2F3C,$8210,$FFE8,$A8B5;

FUNCTION FormatStr2X80 (source:      Str255;
                       myCanonical:  NumFormatString;
                       partsTable:  NumberParts;
                       VAR x:       extended80):  FormatStatus;
   INLINE $2F3C,$8210,$FFE6,$A8B5;

Call these routines instead of the originals. To call FormatX2Str80, all you have to do is this:

VAR
  x:             extended80; {96-bit extended number}
  myCanonical:   NumFormatString;
  partsTable:    NumberParts;
  outString:     Str255

result := FormatX2Str80 (X96toX80 (x), myCanonical, partsTable, outString);

Calling FormatStr2X80 is just slightly more complicated because the extended number is passed by reference:

VAR
  x:           extended;   {96-bit extended number}
  x80:         extended80; {80-bit extended number}
  source:      Str255;
  myCanonical:  NumFormatString;
  partsTable:  NumberParts;

x80 := X96toX80 (x);
result := FormatStr2X80 (theString, realCanon, PartsTable, x80);
x := X80toX96 (x80);

You should find that these calls now work properly with the -mc68881 option
set. This of course means that you’ll need two versions of the source code; one with the calls to convert between 96-bit and 80-bit extended
numbers for use with the -mc68881 option and another one which just uses plain old 80-bit extended numbers for use when the -mc68881
option is turned off.

X-Ref:
Inside Macintosh Volume VI, page 14-49.

String2Date and Date2Secs conversion surprises
Written: 9/17/91
Last reviewed: 8/1/92

String2Date and Date2Secs treat all dates with the year 04 to 10 as 2004 to 2010 instead of
1904 to 1910.
___

This is correct; the Script Manager treats two-digit years less than or equal to 10 as 20xx
dates if the current year is between 1990 and 1999, inclusive. Basically, it just assumes that
you’re talking about 1-20 years in the future, rather than 80-100 years in the past. The same
is true of two-digit 9x dates, when the current year is less than or equal to xx10. Thus, in
2003,  the  date  returned  when  3/7/94  is  converted  will  be  1994,  not  2094.  This  is  all
documented  in  “Worldwide  Development:  Guide  to  System  Software,”  available  from
APDA.

FormatX2Str strings

Developer Support Center October 1992



Macintosh Technical Notes

Written: 11/6/91
Last reviewed: 8/1/92

Using the Script Manager to convert numbers to strings and vice versa, in any language,
what’s  the best  way to create  the string to  pass to  FormatX2Str? Will  strings using the
characters: “#” or “0” or “.” or “,” work no matter what script is currently running, and if
not, what can I do?
___

The number format string and canonical number format string mechanisms that you use with
FormatX2Str and its kin is a strange design, for exactly the reason that you asked about. The
number format string (the one with the characters such as “#” and “0”) does not necessarily
work right regardless of the current script. In fact, it doesn’t even necessarily work right
between localized versions within one script system. The canonical number format string
does  work between  localized  systems and  between  script  systems.  The  strange  thing is
there’s an easy way to store number format strings (usually in a 'STR ' resource), but no
obvious  way  to  store  canonical  number  format  strings.  Here’s  what  you  can  do  when
converting between numbers and strings:

When  you  convert  a  number  format  string  to  a  canonical  number  format  string  with
Str2Format on a U.S. system, it converts it from something like “###.###” to a canonical
number format string that looks something like, “three digits,  a decimal point,  and three
digits.” On a German system, that same number format string would be converted to “three
digits, a thousands separator, and three digits.”

What you can do to get  around this  is  to save the canonical  number format string in a
resource  instead  of  the  number  format  string.  The  canonical  string  stores  things  in  a
language-  and  script-independent  way.  Create  this  resource  by  writing  a  trivial  utility
program that takes a number format string and calls Str2Format to convert it into a canonical
number format string, and then copy this into a handle and save it as a resource of a custom
type, like 'NUMF'. In your real program, load the 'NUMF' resource, lock it, and then pass the
dereferenced handle to FormatX2Str and FormatStr2X.

You can see this done in the ProcDoggie Process Manager sample from the 7.0 Golden
Master CD. Take a look at the SetUpProcessInfoItems procedure in UProcessGuts.inc1.p
file. You’ll see that the 'NUMF' resource is loaded, locked, and then passed to FormatX2Str.
The result is displayed in the Process Information window.

If your program is localized by nonprogrammers, then you might want to provide the utility
that converts a number format string to a canonical number format string resource just in
case they have to  change the entire  format of  the string.  Then they can install  the new
'NUMF' (or whatever you choose) resource as part of the localization process.

Code for truncating a multi-byte character string

Developer Support Center October 1992



Macintosh Technical Notes

Written: 1/24/92
Last reviewed: 8/1/92

I create a Macintosh file name from another file name. Since I am adding information to the
name, I must make sure that it is within the 31 chars maximum allowed by the operating
system. What I need is the equivalent of the TruncText command, except instead of dealing
with pixel width, I want the width to be number of characters (31). I can trunc myself, but
I’d rather do a proper “smTruncMiddle” and have it nicely internationalized.
___

Developer Support Center October 1992



Macintosh Technical Notes

If you’re going to be adding a set number of bytes to the end of a existing string and you
don’t want the localized ellipsis (from the 'itl4' resource) between the truncated string and
your bytes, then you can use this routine:

PROCEDURE TruncPString (VAR theString: Str255; maxLength: Integer);
{ This procedure truncates a Pascal string to be of length maxLength or }
{ shorter. It uses the Script Manager charByte function to make sure }
{ the string is not broken in the middle of a multi-byte character. }
 VAR
   charType: Integer;
 BEGIN
   IF Length(theString) > maxLength THEN
     BEGIN
       charType := CharByte(@theString[1], maxLength);
       WHILE ((charType < 0) OR (charType > 1)) AND (maxLength <> 0) DO
         BEGIN
           maxLength := maxLength - 1;
           charType := CharByte(@theString[1], maxLength);
         END;
       theString[0] := chr(maxLength);
     END;
 END;

If you want the localized ellipsis (from the 'itl4' resource) between the truncated string and your bytes, or you want the localized ellipsis in the
middle of the combined strings truncated to a specific length, then you can use this routine:

FUNCTION TruncPString (maxLength: Integer; VAR theString: Str255; 
truncWhere: TruncCode): Integer;
{ This function truncates a Pascal String to be of length maxLength or }
{ shorter. It uses the Script Manager TruncString function which adds }
{ the correct tokenEllipsis to the middle or end of the string. See }
{ Inside Macintosh Volume VI, pages 14-59 and14-60 for more info. }
 VAR
   found: Boolean;
   first, midPoint, last: Integer;
   tempString: Str255;
   whatHappened: Integer;
 BEGIN
   found := FALSE;
   first := 0;
   last := TextWidth(@theString[1], 0, Length(theString));
   IF Length(theString) > maxLength THEN
     BEGIN
       WHILE (first <= last) AND NOT found DO
         BEGIN
           tempString := theString; { tempString gets destroyed every }
                                    { time through }
           midPoint := (first + last) DIV 2;
           whatHappened := TruncString(midPoint, tempString, truncWhere);
           IF whatHappened < smNotTruncated THEN
             BEGIN { ERROR, bail out now }
               TruncPString := whatHappened; { return error }
               Exit(TruncPString);
             END
           ELSE IF Length(tempString) = maxLength THEN
             found := TRUE
           ELSE IF Length(tempString) > maxLength THEN
             last := midPoint - 1
           ELSE
             first := midPoint + 1;
         END;

Developer Support Center October 1992



Macintosh Technical Notes

       theString := tempString;
       TruncPString := whatHappened; { will always be smTruncated }
                                     { in this case }
     END
   ELSE
     TruncPString := smNotTruncated; { the string wasn't too long }
 END;

Character type and subtype values within the Kanji system
Written: 11/17/89
Last reviewed: 8/1/92

What are the values of character type and subtype with the Macintosh Kanji system?
___

For Roman, these are the values of character type:

   Punctuation         0
   ASCII               1
   European            7

For KanjiTalk, the values are the same as Roman, with the addition of:

   Katakana            2
   Hiragana            3
   Kanji               4
   Greek               5
   Russian (Cyrillic)  6

In Roman, the subtype field is interpreted as:

   Normal punctuation  0
   Numeric             1
   Symbols             2
   Blanks              3

The KanjiTalk subtype values are the same as Roman except if the character type is Kanji, in which case the subtype field takes these values:

   JIS Level 1         0
   JIS Level 2         1
   JIS User Character  2

Finally, for KanjiTalk, the character direction field is replaced by the In-ROM field. It is 1 if the character is in the ROM card and 0 otherwise.

Script Manager NMeasureJust documentation fix
Written: 7/21/92
Last reviewed: 9/15/92

The Script Manager’s NMeasureJust call seems to work differently depending on our main
script (Roman versus Hebrew, for example). Please take a look at the following code and tell
me if I’m doing something wrong:

{
  ....

Developer Support Center October 1992



Macintosh Technical Notes

  Fixed slop  = 0;
  Point   numer   = {1,1};
  Point   denom   = {1,1};
  ::NMeasureJust ((Ptr) charBuffer, (short) charCount,slop,(Ptr) charLocs,
                      smOnlyStyleRun, numer, denom);
  if (charLocs[0]) {
      // Under Hebrew system NMeasureJust acts differently than described in
      // Inside Macintosh Volume VI; first entry in charLocs array containes width
      // of last character and last entry in charLocs array containes zero.
      charLocs[charCount] = charLocs[0];
      charLocs[0] = 0;
  };
  ....
}
___

The truth is that Inside Macintosh Volume VI is incorrect, and NMeasureJust is working correctly, even though the results seem to defy any kind
of sense. Here’s how NMeasureJust works:

NMeasureJust actually puts into the first entry of the charLocs array the pixel offset from the left end of the text to the leading edge of the first
character, regardless of the active script system. For Roman text in a Roman script system, that’s easy: it’s always zero. For Hebrew text in a
Hebrew script system, the leading edge of the first character is on the right edge of the text, so NMeasureJust puts the pixel distance between the
left edge of the text to the right edge of the text——the same thing as the entire width of the text. Each successive entry in the charLocs array is
smaller than the previous entry because we’re gradually moving to the left edge of the text as we move through each successive character. The
trailing edge of the last character is at the left edge of the string, and so the last entry in the charLocs array is zero.

What if you pass in text that contains both Roman and Hebrew text? This text contains a direction boundary, and NMeasureJust can sense this.
For this case, NMeasureJust puts into the charLocs array a series of decreasing values for the right-to-left characters, and a series of increasing
values for the left-to-right characters.

You’re probably passing Roman text (ASCII codes less than 127) to NMeasureJust with the Hebrew script system active to get the results that
you reported. This case includes two direction boundaries: one at the beginning that’s right-to-left and contains no characters, one that’s left-to-
right and contains all your Roman characters, and finally one that’s right-to-left and contains no characters. The first entry in the charLocs array
measures the first right-to-left direction run even though it contains no characters, and so it contains the position of the right edge of your text.
The last entry in the charLocs array is zero because it measures the last right-to-left direction run, which again contains no characters. All the
charLocs entries between the first and the last measure the positions of the left-to-right, Roman characters, and so you get a series of increasing
values. This is just a special case of passing text that contains direction boundaries to NMeasureJust.

Developer Support Center October 1992


